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　As the amount of Fe in the alloy increases, the morphology of the Fe compounds changes from lump-like to plate-like. 
Plate-like Fe compounds have a negative effect on mechanical properties. Therefore, it is useful to know the amount of Fe 
at which Fe compounds change from lump-like to plate-like shape. In this study, we attempted to clarify the effect of Fe con-
tents of 0.33% to 0.52% on the morphology of Fe compounds when unmodified AC2B alloy was solidified in a shell mold. 
The results are as follows: 1） The morphology of Fe compounds was tiny and lump-like when the Fe content was 0.37% or 
less, and coarse and plate-like when the Fe content was 0.42% or more. 2） The crystallization temperature of Fe compounds 
was lower than the Al-Si binary eutectic temperature when the Fe content was 0.37% or less, and higher than the Al-Si bi-
nary eutectic temperature when the Fe content was 0.42% or more. 3） The order in which the phases solidify was thought 
to affect the morphology of the phases.
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　1．緒　　言

　アルミニウム合金鋳物の内部に存在する Fe 化合物は，

機械的性質などを低下させることが知られている 1）．Fe

化 合 物 の 種 類 と し て は α-Al8Fe2Si，α-Al15（Fe/Mn）3Si2），

β-Al5FeSi，π-Al8Mg3FeSi6，γ-Al4FeSi2 などが報告されてい

る 2）．これらのうち β-Al5FeSi は，形態が板状であること

から特に有害と認識されている．Fe 化合物が凝固する際

の核生成に関して Sigworth 3） は，AlP がこれらの Fe 化合

物を核生成させると述べた．他方，Campbell ら 4） は酸化

膜の表面に Fe 化合物が核生成されるとした．Taylor ら 5） 

は，核生成した Fe 化合物が共晶 Si を核形成させることを

示唆した．さらに Roy ら 6） は，核生成した Fe 化合物がガ

ス気泡の核生成サイトになり得ることを示唆した．これら

のように核生成に関しては，ある程度の知見が得られてい

る．しかしながら，成長に関する研究は必ずしも十分では

ない．

　例えば，板状に成長した Fe 化合物 （β-Al5FeSi） が機械

的性質に悪影響を与えることは認識されているものの，合

金中の Fe 含有量との関係は不明確である．これに関して

最近，Sr 改良した ADC12 合金においては，Fe 量が 0.70%

以上の場合に板状の Fe 化合物が形成されることが報告さ

れた 7）．

　Fe は合金中から容易に除去できない元素である．よっ

て， 例えば重力鋳造用に多用されている非改良の AC2B 合

金を対象にした場合，Fe 量が 0.1% 程度の新塊合金と，Fe

量が 0.3～ 0.5% 程度の再生合金のどちらを使用するかは，

経営者や技術者にとって頭の痛い問題である．何故なら，

Fe 量の低い合金ほど高価なためである．妥協案として両

者を混合して使用することも多く実施されている．しかし

ながら，その際においても Fe 量が何 % になるように配合

するかは，経済上必ず下さなければならない決断である．

　これを決断するためには，前述の Sr 改良した ADC12

合金の場合と同様に，Fe 化合物の形態が板状に変化する

Fe 量を知っておくことが必要である．そこで本報では，
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を明らかにすることを試みた．

　2．実験方法

　2. 1　合金の溶製と熱分析

　99.9%Al，Al-30%Cu，Al-20%Si，Al-5%Fe，Al-5%Mg，

Al-10%Mn の各母合金を配合し，Fe 量の目標値が 0.30%，

0.35%，0.40%，0.45%，0.50% の AC2B 合 金 5 種 類 を 配

合した．それぞれを 10 番の黒鉛るつぼに入れ，電気炉内

にセットした．740℃で溶解後，BN コーティングを施し

て予熱を施した鉄製の治具で静かに攪拌した．溶湯温度

720℃から Fig. 1 に示す熱分析容器に注湯を行った．

　熱分析容器において 1 秒ごとに採取した冷却曲線から，

Fe 化合物の晶出温度の測定を試みた．一定の状態で冷却

されている溶湯に凝固潜熱が放出されると，温度停滞や復

熱が生じる．この場合，時間微分することにより，その温

度変化を捉えることができる．そこで，変化し始めた時点

の温度を晶出温度とみなした．

　2. 2　ミクロ組織の観察

　前項の溶湯を Fig. 2 に示す 200℃の Fe 舟型にも，端部

の低い位置から静かに注湯した．得られた鋳塊における熱

電対の測温位置の近傍のミクロ組織を観察した．また，Fe

の目標値が 0.40% の試料を対象にして，SEM/EDX 分析を

実施した．

　3．実験結果

　3. 1　化学成分

　化学成分の分析結果を Table 1 に示す．各分析値は目標

値に対して若干の差異があったものの，分析装置の機差を

考慮するとほぼ目標値通りと言える．3ppm 程度の Ca が

含まれていたが，8ppm 程度の P が共存していたことから，

いずれの合金の共晶組織も非改良と考えられる 8）．

　3. 2　熱分析

　Fig. 3～Fig. 7 に各合金の冷却曲線 （T） と微分曲線（dT/

dt） を示す．初晶温度 （TL） はいずれの合金も 608～ 610℃

Fig. 1　Schematic drawing of thermal analysis cup.
熱分析容器．

Fig. 2　Size of Fe mold （mm）.
舟金型のサイズ（mm）．

Table 1　Chemical composition of specimens.
供試材の化学成分．

Fig. 3　 Cooling curve and its derivative of 0.33%Fe alloy.
0.33%Fe合金の冷却曲線と微分曲線．

Fig. 4　Cooling curve and its derivative of 0.37%Fe alloy.
0.37%Fe合金の冷却曲線と微分曲線．
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の範囲にあったが，Fe 量が増加すると若干低下する傾向

を示した．Al-Si 2 元共晶温度 （TE） はいずれも 560℃程度

であった．Al-Si-Cu 3 元共晶温度 （TE3） は 497～ 499℃の

範囲内にあった．Fe 化合物の晶出温度 （TFe） は Fe 量の増

加により 560.8℃から 567.7℃に上昇した．

　3. 3　ミクロ組織

　Fig. 8 に 0.33%Fe 合金のミクロ組織を，また Fig. 9 に

0.37%Fe 合金のミクロ組織を示す．これらの共晶 Si 相は

板状であった．他方，Fe 化合物のサイズは 20µm 程度と

小さくて塊状であった．一方，Fig. 10～Fig. 12 に 0.42%Fe

合金，0.47%Fe 合金，0.52%Fe 合金のミクロ組織を示す．

多くの Fe 化合物は板状で，長辺のサイズは 100µm 程度と

粗大であった．

　Fig. 13 に 0.42%Fe 合金の SEM 像を示す．粗大な板状

の晶出物が観察された．また，その板状の晶出物から成長

したと考えられる微小な線状の晶出物も見られた．その

Fig. 5　Cooling curve and its derivative of 0.42%Fe alloy.
0.42%Fe合金の冷却曲線と微分曲線．

Fig. 6　Cooling curve and its derivative of 0.47%Fe alloy.
0.47%Fe合金の冷却曲線と微分曲線．

Fig. 7　Cooling curve and its derivative of 0.52%Fe alloy.
0.52%Fe合金の冷却曲線と微分曲線．

Fig. 8　Microstructure of 0.33%Fe alloy.
0.33%Fe合金のミクロ組織．

Fig. 9　Microstructure of 0.37%Fe alloy.
0.37%Fe合金のミクロ組織．

Fig. 10　Microstructure of 0.42%Fe alloy.
0.42%Fe合金のミクロ組織．
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EDX マッピング像を Fig. 14 に示す．この結果から，Fe

化合物は Fig. 13 に明記したように，粗大な板状の晶出物

は β-Al5FeSi 相，微小な線状の晶出物は π-Al8Mg3FeSi6 と推

定された．

　4．考　　察

　4. 1　AC2B 合金の Fe 断面状態図

　Fig. 15 は本実験による初晶温度 （TL），Al-Si 2 元共晶温

度 （TE），Fe 化合物の晶出温度 （TFe） の測定結果をまとめ

たものである．Fe 量が 0.33～ 0.37% と比較的低い範囲で

は，Fe 化合物の晶出温度 （TFe） は Al-Si 2 元共晶温度 （TE） 

よりも低かった．よって，これらの合金における Fe 化合

物は Al-Si 2 元共晶の後に Fe 化合物 +Si+αAl として晶出

した．これらの Fe 化合物は，Al-Si 2 元共晶セルが擬球状

に成長した隙間の狭い領域 9） においてしか成長できない．

そのため，微小な塊状を呈したものと考えられる．

　一方，Fe 量が 0.42～ 0.52% と比較的高い範囲において

は，Fe 化合物の晶出温度 （TFe） は Al-Si 2 元共晶温度 （TE） 

よりも高かった．よって，Fe 化合物は Al-Si 2 元共晶より

も先に凝固した．この温度で凝固した Fe 化合物は粗大な

板状であったことから，Fig. 13 に示したように β-Al5FeSi

に近い組成と推察される．この場合，Al-Si 2 元共晶セル

が形成される前であることから，Fe 化合物は広い領域に

おいて自由に成長できた．その結果，自形 10） である粗大

な板状を呈した．

　Fe 化合物と Al-Si 2 元共晶の凝固順序が入れ替わった Fe

量は 0.40% 程度であった．本報では一定の Al-Si 2 元共晶

温度 （TE） に対して，Fe 化合物の晶出温度 （TFe） を上下さ

せた際の Fe 化合物の形態を論じた．本報の場合とは逆に，

一定の Fe 化合物の晶出温度 （TFe） に対して，Al-Si 2 元共

晶温度 （TE） を改良処理により変化させた場合にも，本実

験と同様に Fe 化合物の形態が変化する例が報告されてい

Fig. 11　Microstructure of 0.47%Fe alloy.
0.47%Fe合金のミクロ組織．

Fig. 12　Microstructure of 0.52%Fe alloy.
0.52%Fe合金のミクロ組織．

Fig. 13　SEM image of 0.42%Fe alloy.
0.42%Fe合金の SEM像．

Fig. 14　EDX mapping image of 0.42%Fe alloy.
0.42%Fe合金の EDXマッピング像．

Fig. 15　 Part of phase diagram of Fe section of un-
modified AC2B alloy.
非改良 AC2B合金の Fe断面状態図の一部．
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る 11）．よって，凝固順序は形成される相の形態に影響を及

ぼす 12）．

　4. 2　Fe 量が異なる合金の凝固経路

　Fe 量 0.40% を境にして Fe 化合物の形態が変化した理由

を説明するため，Al-Si-Fe 3 元状態図の液相面の一部 13） を

Fig. 16 に示す．微小な Fe 化合物が晶出した 0.37%Fe 合

金の場合，図中における下側の黒丸 （608.0℃） において初

晶が晶出し始めた．残留液相は下側の矢印で示したように

濃化し，やがて 560.9℃で Al-Si 2 元共晶が晶出した．これ

により残留液相はさらに濃化し，図中の N 点で Fe 化合物

+Si+αAl の 3 元共晶が生じた．

　一方，粗大な Fe 化合物が晶出した 0.42%Fe 合金の場

合，図中における上側の黒丸 （609.7℃） で初晶が晶出し始

めた．そして上側の矢印で示したように濃化し，やがて

561.9℃において Fig. 13 及び Fig. 14 に示したように粗大な

板状の Fe 化合物が晶出した．残留液相はさらに濃化し，

N 点で Fe 化合物 +Si+αAl の 3 元共晶が生じた．

　これらより，形成される Fe 化合物の形態は凝固経路と

関係し，初晶凝固により濃化した残留液相の Fe 濃度が N

点 （3 元共晶点） よりも高いか低いかにより決定される．

なお，本合金には Mg が含まれていたことから，一部は

Fig. 13 及び Fig. 14 に示したように π-Al8Mg3FeSi6 となった．

　4. 3　Fe 化合物の形態が変化する Fe 量

　Fig. 16 に矢印で示したように，本合金の Si 量は 6% と

低いことから，残留液相には比較的大きな濃化が生じ

た．そのため，Fe 化合物の形態が変化する （初期） Fe 量

は 0.40% と比較的低い値であった．他方，緒言に述べた

ADC12 合金の場合 7），Si 量が 9.6% と高いことから，残留

液相には比較的小さな濃化しか生じなかった．そのため，

Fe 化合物の形態が変化する初期 Fe 量は 0.70% と高くなっ

た．これに従えば，Si 量が 12% に近い合金の場合，残留

液相の濃化がほとんど生じないことから，Fe 化合物の形

態が変化する Fe 量は 3 元共晶点である 0.8% 程度と高く

なることが思慮される．以上より，Fe 化合物の形態が変

化する Fe 量は Si 量の影響を大きく受けるものである．

　5．結　　言

　本報では非改良の AC2B 合金をシェル鋳型で凝固させた

際の Fe 化合物の形態に及ぼす 0.33～ 0.52% の Fe 量の影

響を明らかにすることを試みた．得られた結果は次のとお

りである．

1）  Fe 化合物の形態は，Fe 量が 0.37% 以下の場合は微小な

塊状であった．Fe 量が 0.42% 以上の場合は粗大な板状

であった．

2）  Fe 化合物の晶出温 度 は，Fe 量 が 0.37% 以下の場合は

Al-Si 2 元共晶温度よりも低かった．Fe 量が 0.42% 以上

の場合は Al-Si 2 元共晶温度よりも高かった．

3）  共晶 Si 相と Fe 化合物相の晶出順序は，形成される相

の形態に影響を及ぼすものと考えられた．
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Fig. 16　 Part of liquidus surface of Al-Si-Fe ternary 
phase diagram, and schematic diagram of 
solidification pathways of alloys with different 
Fe contents.
Al-Si-Fe 3元状態図の液相面の一部，及び Fe量の異な

る合金の凝固経路の模式図．


